Algoritma Dasar


Hasil gambar untuk algoritma
Algoritma
Bahasa pemrograman semakin banyak dipelajari oleh banyak orang. Hal ini terkait dengan kemajuan zaman yang menjadikan teknologi sebagai hal penting untuk menunjang kemajuan. Bagi pembaca yang ingin mempelajari bahasa pemrograman, hal dasar yang harus dipahami adalah algoritma pemrograman tersebut. Untuk mengerti apa itu algoritma pemrograman, silahkan simak pembahasan di bawah ini.
Dalam matematika dan ilmu komputer, algoritma adalah urutan atau langkah-langkah untuk penghitungan atau untuk menyelesaikan suatu masalah yang ditulis secara berurutan. Sehingga, algoritma pemrograman adalah urutan atau langkah-langkah untuk menyelesaikan masalah pemrograman komputer.
Dalam pemrograman, hal yang penting untuk dipahami adalah logika kita dalam berpikir bagaimana cara untuk memecahkan masalah pemrograman yang akan dibuat. Sebagai contoh, banyak permasalahan matematika yang mudah jika diselesaikan secara tertulis, tetapi cukup sulit jika kita terjemahkan ke dalam pemrograman. Dalam hal ini, algoritma dan logika pemrograman akan sangat penting dalam pemecahan masalah.
Bentuk Dasar Algoritma
Algoritma sendiri mempunyai tiga 3 bentuk dasar, antara lain :
Algoritma Sekuensial (Sequence Algorithm)
Sequence algorithm atau algoritma sekuensial merupakan algoritma yang langkah-langkahnya secara urut dari awal hingga akhir. Bentuk dari algoritma sekuensial ini salah satu contohnya seperti algoritma memasak air. Langkah demi langkah yang dijalankan harus urut dari atas sampai bawah.
Algoritma Perulangan (Looping Algorithm)
Looping algorithm atau algoritma perulangan merupakan suatu algoritma yang menjalankan beberapa langkah tertentu secara berulang-ulang atau looping. Pada masalah yang kita hadapi, ada pula sebuah langkah yang harus kita lakukan secara berulang-ulang. Contoh dari algoritma looping ini adalah algoritma menjemur pakaian:
1) Siapkan jemuran.
2) Ambil satu pakaian yang nantinya akan dijemur.
3) Peras pakaian tersebut terlebih dahulu.
4) Letakkan pakaian tersebut pada tiang jemuran.
5) Ulangi langkah dari 2 sampai 4 hingga pakaian habis.
Dari algoritma di atas, dapat diketahui bahwa dari langkah 2 sampai 4 harus dilakukan secara berulang-ulang hingga pakaian habis.
Algoritma Percabangan atau Bersyarat (Conditional Algorithm)
Conditional algorithm atau algoritma bersyarat merupakan algoritma yang menjalankan langkah berikutnya apabila terdapat syarat yang sudah dapat dipenuhi. Berikut salah satu contoh dari algoritma bersyarat :
1) Siapkan panci.
2) Masukkan air secukupnya ke dalam panci.
3) tutup panci tersebut.
4) letakkan panci tersebut di atas kompor.
5) Hidupkan kompor.
6) Apabila air sudah mendidih, lalu matikan kompor.
7) Angkat panci tersebut dari kompor.
Algoritma bersyarat atau contional algorithm terdapat pada langkah ke 6. Apabila air sudah mendidih, lalu matikan kompor. Sehingga apabila air tersebut belum mendidih, maka kompor tidak dimatikan.

Contoh Algoritma
Menentukan  Apakah Bilangan Tersebut Ganjil atau Genap
Terdapat bilangan yang bernama bilang bulat yaitu 0, 1, -1, 2, dst serta bilangan asli 1, 2, 3, 4, 5, dst. Kedua jenis bilangan tersebut sering digunakan dalam berhitung. Himpunan bilangan-bilangan bulat dalam buku teks aljabar pada umumnya dinyatakan dengan lambang "Z" dan himpunan bilangan-bilangan asli dinyatakan dengan lambang "N". Algoritma guna menentukan apakah bilangan tersebut ganjil atau genap dapat disajikan dengan flowchart seperti dibawah ini :
Menentukan Apakah Bilangan Tersebut Ganjil atau Genap
Bilangan genap merupakan sebuah bilangan bulat yang akan habis atau tidak memiliki sisa jika dibagi 2 (dua). Bilangan ganjil merupakan sebuah bilangan bulat yang tidak akan habis apabila dibagi 2 (dua).
Menghitung Keliling dan Luas Lingkaran
Lingkaran merupakan suatu himpunan dari semua titik-titik pada bidang dalam jarak yang tertentu dan disebut dengan jari-jari dari titik tertentu dan dapat disebut titik pusat. Lingkaran merupakan contoh dari kurva tertutup sederhana, lingkaran membagi bidang menjadi bagian luar dan dalam. Algoritma menghitung keliling serta luas lingkaran dapat disajikan dengan flowchart seperti dibawah ini :
Menghitung Keliling dan Luas Lingkaran
Menampilkan Bilangan Ganjil Diantara 10 sampai 30
Bilangan ganjil yang terletak diantara 10 dan 30 11,13,15, dan seterusnya. Namun, yang akan ditampilkan kecuali bilangan 21 dan 27. Jadi output yang diharapkan dari algoritma tersebut adalah bilangan ganjil 10 sampai 30 kecuali bilangan 21 dan 27. Algoritma untuk menampilkan bilangan ganjil antara 10 hingga 30 kecuali bilangan 21 dan 27 disajikan dengan flowchart dibawah ini :
Menampilkan Bilangan Ganjil Diantara 10 sampai 30
Algoritma tahun Kabisat
Terdapat juga algoritma tahun kabisat. Tahun kabisat merupakan sebuah tahun yang memiliki tambahan 1 hari dan bertujuan agar kalender dapat sinkron dengan musim tahunan dan keadaan astronomi. Bulan Februari memiliki 29 hari pada saat tahun kabisat. Tahun yang dapat untuk dibagi dengan 4 adalah tahun kabisat. Algoritma guna menentukan tahun kabisat jika disajikan dengan flowchart seperti dibawah ini :
Algoritma tahun Kabisat
Menampilkan Bilangan Genap Mullai dari Angka 2 sampai n, Kecuali Bilangan Genap yang Kelipatan 4
Bilangan genap merupakan sebuah bilangan-bilangan bulat yang habis jika dibagi 2. Deret yang ditampilkan dari algoritma kali ini merupakan deret dari bilangan genap dari 2 hingga ke n kecuali bilangan yang merupakan kelipatan 4. Algoritma tersebut dapat digambarkan dengan flowchart seperti dibawah ini :
Menampilkan Bilangan Genap Mullai dari Angka 2 sampai n, Kecuali Bilangan Genap yang Kelipatan 4
Menghitung Harga yang Dibayar Setelah Mendapatkan Sebuah Diskon
Ada juga algoritma yang dapat menghitung jumlah dari biaya yang harus dibayar oleh sang pembeli setelah mendapatkan sebuah diskon 10% dengan syarat jumlah dari total pembelian tersebut Rp.1.500.000,- Algoritma guna menghitung besaran biaya tersebut dapat digambarkan dengan flowchart seperti dibawah ini :
Menghitung Harga yang Dibayar Setelah Mendapatkan Sebuah Diskon
Jumlah barang memiliki sifat yang dinamik sesuai dengan input atau masukkan dari user. Apabila jumlah total dari harga tersebut kurang 1500000 maka tidak mendapatkan sebuah diskon.
Mencari Maks dan Min dari suatu Deret Bilangan
Terdapat juga sebuah algoritma guna mencari nilai maks serta min dari suatu n deret bilangan yang dimasukkan atau diinput oleh user. Algoritma tersebut dapat disajikan dengan flowchart seperti dibawah ini :
Mencari Maks dan Min dari suatu Deret Bilangan
Kalkulator Sederhana dari 2 Bilangan
Terdapat sebuah algoritma sebagai kalkulator sederhana untuk operasi penjumlahan, perkalian, pembagian, dan pengurangan. Kalkulator sederhana ini hanya dapat melakukan perhitungan dari 2 bilangan yang diinput oleh user. Algoritma guna menghitung 2 bilangan dapat digambarkan dengan flowchart seperti dibawah ini :
Kalkulator Sederhana dari 2 Bilangan
Menghitung Beberapa Angka dari Suatu Bilangan
Pada flowchart kali ini mengenai sebuah algoritma untuk menghitung beberapa angka dari suatu bilangan yang dimasukkan atau diinput oleh user. Berikut flowchart algoritma tersebut.
Menghitung Beberapa Angka dari Suatu Bilangan
Membalik Sebuah Kalimat
Seperti yang kita ketahui sebelumnya tentang pengertian algoritma, bahwa algoritma juga dapat untuk menampilkan sebuah kalimat namun dengan urutan yang terbalik. Misalkan "woocara" dibalik menjadi "aracoow". Struktur data yang digunakan ialah Stack. Untuk membalik sebuah bilangan, huruf dari kalimat kita input dalam stack dengan menggunakan metode Push. Setelah stack tersebut sudah terisi, maka output kembali dengan memakai metode Pop. Pada algoritma membalik sebuah kalimat, adanya penggunaan struktur data stack diimplementasikan ke array. Dalam implementasinya ke array tersebut, kita harus terlebih dahulu menyiapkan sebuah array dengan memiliki panjang yang sama dengan jumlah huruf yang ada dalam kalimat yang akan dibalik tersebut. Pada gambar flowchart dibawah ini, terdapat tiap huruf dari kalimat yang diinput pada array dengan index ke-0 hingga ke-n dengan memakai metode push.
Membalik Sebuah Kalimat
Kemudian huruf tersebut akan mengeluarkan kata mulai dari index ke-n hingga index ke-0.

Itulah pengertian algoritma, bentuk dasar algoritma, klasifikasi algoritma, dan contoh algoritma. Algoritma sangat diperlukan untuk mengolah data yang ada di komputer.




0 komentar:

Posting Komentar

Model Linier

LINIER Model Linier model linier digunakan dalam berbagai cara sesuai dengan konteksnya. Kejadian yang paling umum adalah sehub...

About me

Photostream